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Abstract. A non-conventionai theory for superconductivity that is not based on a Fermi 
liquid description is presented. Using a functional integral method we show that the two- 
dimensional Hubbard model coupled weakly in the third dimension has a superconducting 
solution for the non-half-filled band case. The superconducting critical temperature is 
determined by the Bose-Einstein condensation temperature, which increases with the 
coupling to the third dimension and with the hole concentration. The critical behaviour is 
similar to that of a three-dimensional type I1 superconductor with a neutral Higgs field 
induced by spinon fluctuations. In the language of the lattice gauge theory we find that 
the spontaneous breaking of the U(1) local gauge symmetry in the quantum paramagnet 
confining phase leads to superconductivity. 

1. Introduction 

Experimental results indicate that correlation effects play an important role in the new 
superconductors [l]. These correlations are described by a Hubbard model. This model 
uses two parameters: U ,  the effective on-site interelectronic Coulomb repulsion, and 8t, 
the band width (band structure calculations show that the band arises from the anti- 
bonding combination of the Cu d , 2 ~ ~ 2  and 0 paorbitals). The Hubbard model has been 
mapped onto a two-dimensional (ZD) Heisenberg antiferromagnet (AF) [ 2 ] ;  this mapping 
is exact for large U ,  and for small values of Uit is justified by scaling. Therefore, exactly 
at the half-filled band (n + n = 1, 6 = 0), we have a 2~ AF. By doping the system 
(n + n < 1, 6 # O), the presence of holes transform the AF insulator to a new type of 
liquid [3-1015- that can give rise to superconductivity [3-91. 

In spite of these successes recent Monte Carlo calculations performed by Hirsch [ 101 
have indicated difficulties with superconductivity in the 2D Hubbard model, so it is 
important to investigate the different approximations used. 

To my knowledge there are two approximations: the first one neglects phase fluc- 
tuations [3-71 of the resonant valence bond (RVB) order parameter, and the second 
approximates the effective hopping term by t6, where 6 is the hole concentration. This 
approximation is crude, since after the elimination of the double occupied sites the 
hopping term becomes a two-body interaction term. The slow variation in the RVB order 
parameter was considered at mean-field levels and it was shown that we can have either 
d- or s-wave superconductivity [7]. 

In order to study these problems we compute the free energy in terms of amplitudes 
and phases. For the amplitude part, we find that the effective hopping term behaves as 
t In [5] the author uses two sublattices. In [8] the authors work in the small-U/t limit. 
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a bosonic hole-hole correlation function. In a mean-field approximation this correlation 
is non-zero in the case we have a Bose condensation. Since there is no condensation in 
2D we argue that a weak coupling in the third dimension is required. Combining the 
requirements of boson condensation with the non-vanishing of the RVB order parameter, 
we find that the mean-field critical superconducting temperatures increase with hole 
concentration and with coupling in the third dimension. The dependence on the third 
dimension is model-dependent [25]; we can have hopping in the third dimension or 
Josephson-like coupling between copper oxide planes. Here we limit ourselves to the 
first possibility. 

The phase-dependent part is similar to the ~ D X - y  model coupled to a gauge field 1111. 
As a result of this gauge field we have two correlation lengths, the usual superconducting 
correlation length E s ,  and the Higgs correlation length EH [ l l ]  induced by the spinon 
fluctuations. 

This 3D x-y model coupled to a gauge field has some similarities to the type I1 super- 
conductor. EH represents the penetration length, and decreases with increases in hole 
concentration when EH + superconductivity is destroyed. Specifically, we identify EH 
with the hole boson correlation length and ES with the RVB correlation length. 

The format of this paper is as follows. In 9 2 we discuss the Hubbard model and show 
how it can be described in terms of new bosons and fermions. Section 3 is devoted to 
bosonisation in terms of the RVB order parameter and density order parameter. In § 4 
we compute the effective potential in terms of amplitude and phase, and in § 5 we 
estimate the superconducting critical temperature obtained by demanding that T:VB 
(the RVB critical temperature) is equal to TFE (the Bose-Einstein condensation tem- 
perature). Finally, in § 6 we discuss the phase-dependent part, based on existing results 
in lattice gauge theory. 

2. Themodel 

We consider the Hubbard model of a cubic square lattice 

H = - t 2 c: (n)c,(n + p )  -k HC + ux c{ (n)c t (n)c:  (n)c J (n)  
U =  T .  I n,p n 

- &F 2 iC;  (n>c t + cl (n>c 1 (n>l. ( la)  
n 

The investigation of this model will be performed with the aid of the slave boson method 
[4, 6 ,7 ,  12-16]. Formally our derivation is similar to that given in [4], but conceptually 
we follow Schwinger's ideas [ 171. The basic thing is to replace a nonlinear operator by a 
given combination of bosonic or fermionic harmonic oscillators. A known example is 
the angular momentum operator which is reblaced by two harmonic oscillators (HOS). 
The Hilbert space of the angular momentum is replaced by a direct product of the two 
HOS. For the electron operators we use two bosonic HOS and two fermionic HOS. We 
introduce for each electron operator two bosons e, e+ (for holes), d,  df (for double 
occupancy); and two fermionsf? ,f; (spin up) andf l  ,fl (spin down). As a result the 
Hilbert space of the electron which is spanned by four states IO), 1 t ), 1 1 ), 1 t 1 ), is 
replaced by a direct product given by le, d ,  f r  , f~ ). The space of each variable is spanned 
by the following vectors: le) = {IOe), /le)}; Id) = {IOd), Ild)}; I f r )  = {IO,), l l r )} ,  and 

the first excited state]. Each original state is replaced by a given combination of four HO 
I f &  = {IO 1) , 11 J )I [lee), 104 , IO 1' ) , IO J ) is the ground state and I le), 114 > 11 t > 11.1 is 

states: lo)+ Ile, 0 4  O , ,  011, I ? ) +  /Oe, 0 4  I , ,  O J ) ,  I .1>+ IOe, 0 4  O r ,  111, and 



Superconductivity in the Hubbard model 2823 

I 1 t )-+ b ,  l d ,O , ,  0 , )  
On this basis we establish the following relations: 

C,+(n) = e(n)f:(n) + od+(n) f - , (n )  C,(n) = [C,'(n)]+ CJ = T ,  1 . ( l b )  

Thee, e+, d ,  d+ satisfies the commutation relation and thef,,f,C anticommutation. Using 
these definitions we obtain that the C,, C: satisfies anticommutation relation. 

1 + i 1 )( 1 1 + 1 t 1 )( 1 i = 
1) is replaced by 

The completeness of the original states (lO)(Ol + i t )( 

e+(n>e(n> + d+(n)d(n)  + f ,+(n)f,(n) = 1. ( I C )  
a = t , I  

It is important to note that the number of variables on the right-hand side of equation 
( l b )  is larger than on the left. We transform four operators into eight. In order to have 
a correct transformation we need constraint equations. Equation (IC) provides the first 
one, and in addition we have (e')' = (d')' = ed+ = 0. 

Using these relations and equations (la-c) we obtain the following form for the 
Hubbard Hamiltonian: 

H = - t E x {[e(n>e+ (n  + ,U) - d +  ( n ) d ( n +  P)lf,' (nlfu(n + P I  

+ [e (n )d (n  + p)  + e(n + PP(~>ICJ~:  ( n ) f L ( n  +PI + HC) 

+ ( U  - E F )  d +  (n)d(n) + E F  e+(n)e(n) - E F  2 1. P a )  

n , p  (J= t , I 

n n n 

Here n runs over the square lattice points and p is the unity vector [n = (ax, n,), p = 

Using the coherent state representation we construct a path integral in terms of the 
boson and fermion variables [18].  In this representation f r  , f ;  , f ~  , f j  satisfies the 
Grassman algebra and e, e+, d ,  d+ become complex numbers which, in addition to nor- 
mal bosons, satisfy ( e )2  = (e+)* = (d )*  = (d')' = ed+ = e+d = 0. Contrary to normal 
coherent states the hole boson coherent state 12) is given by 12) = exp(Ze+)IOe) = 
joe) + Zj l e ) ,  since Z 2  = 0. 

The path integral for the Hamiltonian given in equation (2a) takes the form [19] 

((09 1-ayL (+ax, 0)H. 

Z = J  D f ;  Df  D f s  + D f~ De+ De D d +  Dd DA exp(A). (2b) 

The integration with respect to the field A was introduced in order to satisfy equation 
(IC). The action A which appears in the path integral is given by 

A = lo' d t  ( x fa '@; z>[a, - z)lf,(n; 
n,o= t 1  I 
+ t 2 { [ e ( n ;  t ) e + ( n + p ;  z ) - d + ( n ;  t ) d ( n + p ;  z)] 

x f :  (n ;  z)f,(n + p ;  z) + [e (n ;  z ) d ( n  +,U; t )  + e (n  +,U; z ) d ( n ;  z)] 

x of,+ (n;  t)f?,(n + p ;  t) + HC} + x d + ( n ;  z) 

n,p,a= t I I 

n 

x [ d , + u - ~ F - A ( n ;  z ) ] d ( n ; t ) + C e + ( n ; t )  

x [a, - E F  - ~ ( n ;  t > l e ( n ;  t) + 
n 

(2c)  
n 1 [EF + ~ ( n ;  z>l . 

In the limit U 9 t one integrates out the d ,  d+ variables and equation (2c)  reduces to 
[2,4,61: 
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+ t 
+ e+  (n;  t>[a - E F  - ~ ( n ;  z>le(n; Z> 

2 [ f :  (n ;  r>e(n; z ) e +  (n  + y; t > f u ( n  + p ;  z> + HC] 
n,p.o= t , 1 

( 2 4  
n I 

where1 = 4t2/Uandois theinverse temperature (p  = 1/T ,  KB = 1, f i  = l),fu,fuare the 
spinon and e ,  e+ the holon bosons [ 5 ] .  

3. The bosonisation of the action 

The bosonisation method is based on replacing pairs of fermions with collective variables 
that might not be real bosons (see the case of pairons introduced by Schrieffer [20] for 
the BCS order parameter). The identification of the collective variables is done within a 
mean-field approximation. 

Considering the actions (2c) and ( 2 4  we can use the following approximations: 

2 e(n)d(n + iu>of: (n>f?,(n + ,PI = 2 [(e(n)d(n + P))of: (nl" + P )  

+ e(n)d(n + Pc>(of: (n>f'su(n + P I  - (e(n)d(n +,Pu))(of: (n>f'u(n +PHI 
o = T . "  a= T .  1 

in equation (2c) and 

in equation ( 2 4 .  
It is important to note (see the first equation) that (e(n)d(n + ,U)) # 0, in spite of the 

fact that (d) = 0. The reason is that the average is performed with respect to a Bose 
Hamiltonian which contains a term e(n)d(n + p)(f: (n)fl,(n + p)). Asimilar decoupling 
is also performed for the density part: 
e(n)e+ (n + P)f: + ,U> 

= (e(n)e+(n + PNf: (n>fo(n + P> + e (n )e+(n  + ,P.)(fa'(n>fu(n + P I )  
- W > e +  (n + P N f a '  (n>fo(n + P I ) .  

As a result of these approximations we diagonalise a Bose and Fermi Hamiltonian in the 
presence of a background field. 

In order to go beyond the mean field we will use the method of functional integral for 
collective variables [19]. At the level of a stationary phase approximation this method 
reduces to the mean-field result. In the action given by equation (2c) we have two 
collective variables (and respectively their complex conjugates) 
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The first one is the RVB order parameter [l, 21 and the second represents the spinon 
gauge field. The substitution of the collective variables is performed with the new con- 
straint fields p,(n)p,*(n) for the substitution of equation ( 2 f )  and q(n ,n  + p) 
[q*(n, n +,U)] for the substitution of equation (2e ) .  The method for doing this is based 
on the following identity: 

exp(AB) =Im dx exp(Ax)S(x - B )  = j-; dx I-; dY exp(Ax) exp[-ir(x - B)1. (2g)  
--r 

The situation for the action given in equation ( 2 d )  is simpler since the collective 
variable 

E of: (n)f?o(n + ,U) 
o=t.I 

is introduced by the Hubbard-Stratonovici [ 191 method. The interaction 

of;: (n>f'o(n + P I )  ( c of;: (n>f'o(n + P I )  + (2 1 . = t , l  
is replaced by a Gaussian integral in the action over the field q(n ,  n + p) :  

1 
2.J 

A convenient way to write the actions (2c )  and (2d)  in terms of the collective field is to 
use Dirac matrices: 

- - q(n, n + ,U)q*(n, n + p). 

0 0  

-0  0 0 -0 

where I, U = (ol, 02, as) are the 2 X 2 Pauli matrices and y ,  Z, a are 4 X 4 matrices 
constructedfromthePaulimatricesy = ( y l ,  yz ,  y3),Z = (Z1, &, &),a = (a l ,  az,  a3). 

In the addition we introduce the spinors 

v +  = (f; , f t  ,fr >fl) 

q +  = ( e + ,  d + ,  e ,  d )  

v = ( v + ) +  

T = ( v + > + .  
and 

For equation ( 2 d )  we have only one boson field e ,  e+ and we do not use the spinor 4, @+. 
We define new matrices as a function of the original ones given in equation (3a) 

y ;  = 4(y0 ? i) y t  = 2(a* 2 y2 )  

Z; = ( 2 3  yo) a' = +(CY, ? y1>. 
(3b)  

An additional convention will be to include in p the vector p = (0,O) [,U = { ( O , O ) ,  
(+a,, 0), (0, ~ a , ) } ] .  Using these definitions we replace the action A given in equation 
(2c)  by 

A = A F + A , + A ,  (4a) 
where AF is the fermion part, AB is the boson part and Ac is the collective part. 

A, = I o ' d r ~  v + ( n ;  r ) { a n , n + p  i [ a , - ~ ( n ,  T ) 1 + ( 1 - ~ n , t z A u )  
n 3 v  
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The superconducting order parameter is represented in terms of the collective variables 
(Zaf: (n)f,‘(n + p) )  and the hole boson variables e(n) 

(T ac,+ (n)CL(n  + PI) = (4nMn-i -  h)) 

(T af;(n)f’.An + P)) = (e (nN(4n + p)) (q*(n ,  n + ,PI) .  (5a)  

This last expression shows that the sc order parameter is nonzero when both (4) # 0 and 
(e) # 0. This means that in addition to the non-vanishing of the RVB order parameter 
(4) # 0, we must have condensation of holes, (e) # 0. A different possibility that would 
exclude boson condensation but would allow pairing of hole bosons such that 
(e(n)e(n + p)) # 0, (e) = 0 would be possible if we had a direct attraction of bosons [21]. 

In order to take care of the boson condensation we shift the hole boson operator by 
a macroscopic classical field and look for the minimum of the action given in equations 
(4a) and (4e) with respect to the variation of the classical fields U ,  U * .  Formally, we shift 
the hole variables e + e + U ,  e+ + e+ + U * ,  as a result of which the action given in 
equations (4a) and (4e) changes to: 

4. Computation of the effective potential 

In this section we compute the effective potential (the free energy for the actions given 
in equations (2c) and ( 2 4 ) .  The method of calculation will be the same for both actions. 
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Each time a difference appears we will mention it. In general, for the action in equations 
(2d) and (4e-h) Dg,+Dg, means De'De. 

Using functional integration techniques [ 191 we integrate out the fermion degrees of 
freedom and obtain the effective action r as a function of the order parameters T,(n), 
B(n ,  n + p) and the constraints pu(n), q(n,  n + ,U) ,  A(n) 

exp(-r) = Dq' D p  DI$+ Dy,exp(A) Dg,' Dg, D q '  Dq exp[A(O)] (6a)  i /I 
where A(0) = A[T,(n) = B(n,  n + ,U) = q(n, n + p)  = p,(n) =A(n) = u(n) = 01. 

The effective action r can be separated in terms of amplitudes p! (n ) ,  r,(n), 
b(n, n + p), qO(n, n + ,U) ,  A(n) and thephase-dependent part O(n,  n + p )  andxU(n) (for 
the action in equations (2d) and (4e-h) the order parameter b(n,  n + p) is absent). 

T ,  (n)  = r ,  (E) eXPbxp (n>l B(n,  n + ,U) = b(n,  n + p )  exp[iO(n, n i p) ]  

pu(n> = pO,(n> exp[-ixu(n>l q(n, n + p) = qO(n,  n + ,U) exp[-it)(n, n + ,U)]. 

Performing the functional integration [19] with respect to g,. p+ and q, q+ we find 

r = io' d z  (- $ [tr In(DE) + tr ln(1 + G:VF)] + - [tr ln(Dg) + tr In(1 + GiVB)] 

(6b) 

1 
B 

+ E {p,(n; w,* ( n ;  t) + p,*(n; t )T , (n;  z) 
n%P 

+ q(n, n + p ;  t )B*(n ,  n + p ;  5 )  

+ (1 - ' n . n + p )  - sn ,n+p{[&F + A(n)][l + iu(n)12]> . 
+ q*(n, f l  + t ) B ( n ,  4- ,U; t) - t[u(n)u*(n + p TE (n)  - HC]} 

(7a) \ 
D i  and D i  are the fermion and boson phase-independent matrices, respectively, 

(Gg)-l D F  0 - - { 'n ,n+,[ f& - fV4l + (1 - s n , n + , , >  

+ y,p;(n) + Yo+P;(n) + Y+4% n+ ,U) + y -qO(n ,  n + U ) >  

+ @ - b y n ,  + (7c) 

(7b) 
(G;)-l SE DB 0 - - u s n , n + p { Y o a r  + f [W + - &(&F - tu)> 

+ t(1 - 6 n , n + , ) X ~ ~ i ( n )  + lYir;(n) + a+bO(n,  II + ,U) 

The matrices VF and VB contain the phase-dependent part: 

VF = (1 - ~ , , , + . ~ U Y o + ~ ~ ~ ~ ~ ~ ~ ~ P ~ - ~ ~ , ~ ~ ~ l  -11 + YoP;(~){exPl+ixp(n>l -11 

VB = ~ ( 1  - s.,.+,)UC:r~(n){exp[ix,(n>l -1) + ~:;rO,(n){exp[-ix,(n)I -11 

+ y+qO(n,  n + p){exp[i0(n, n +  PI1 -1) 
+ Y-qO(n, n + p){exp[-it)(n, n + AI -1111 

+ a-b(n,  n + ,u){exp[i0(n, n + p)] -1l-D. 

( 7 4  

+ a+b(n, n + p){exp[-iO(n, n + p)] -1} 
(7e) 

When we consider the action given in equations (4e)-(4h) we replace in equation (7a) 
qB" with (1/2J)qq*, and equations (7c) and (7e) become scalar operators since we 
have only one bose field e, e*. The effective potential given in equation (7a) allows 
for determination of the amplitude contribution to the effective action and the phase- 
dependent part. In order to compute the phase-dependent part of the effective potential 
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we expand equation (7a)  in powers of VB and VF. 

performed with the aid of the formula [22] 
The phase-dependent part is evaluated up to fourth order in VB and VF. This is 

. . . G:(nr-I, t r - i ,  nrsr)Vt(nr, n i ,  t i ) ] .  (7f) 
Here we use the convention that the trace is over the Pauli matrices. We separate the 
amplitude and phase part: T ( r ,  p ,  b, q ,  A; x, 19) = To + TI. To represents the amplitude 
part and Ti is the phase part. The phase-dependent part looks similar to models in lattice 
gauge theory [23]. 

We will consider first the amplitude part (obtained when we put VB = VF = 0). 
Using formula (7a) we have for ro: 

1 
To = Job d t  (-(1/2/3) trln[D:] + -tr ln[Dt] + Ld[-(&, + iL)(l + iu12) 

B 
+ 2boq0 + 27040 - ~luo:;,,olj. (78) 

In evaluating To we have used: p,(n) = po, q(n, y1 + p )  = qo, A(n) = A, p,(n) = p o ,  
b(n, n + p) = bo, u(n) = uo. The parameter 11 is obtained after we average with respect 
to the phase x,(n). The fluctuations of the phase are governed by the phase-dependent 
part functional Tl: 

When we use the action given in equations (4e-h), boqo is replaced by (1/2J)qt. In order 
to find To we have to know the spectrum of the matrices D; and D i  . We consider first 
the action given in equations (4a)-(4d). 

11 = 2(cosxu(4),,. (7h) 

The eigenvalues of the matrix D; are given by: 
E ( K )  = { [Y0 t (K)  + 4 2  + qit(K)2}”2 

t ( K )  = 2(cos K ,  + COS K,). 

where 

(86) 
A similar diagonalisation of the Bose matrix gives: 

2 ln{[iw, - Q+(K)][-iwn - Q - ( K )  - t2t2(K)b6]} (8c) tr In DB - - L-d 

where Q + ( K )  and Q - ( K )  are the hole and double occupancy bands (e and d ,  respect- 
ively). 

1 
- B K,wn=2nn/P 

Q + ( K )  = (&F + A) - t p o z ( K )  
Q - ( K )  = U -  (&F + A) f fpOZ(K). 

( 8 4  
(se) 

We evaluate equation (7g) and find 

To = -2 2 ln{cosh[BE(K)/2] + 2 ln{[iw, - Q+(K)]  [ -iw, - W ( K )  
K K , w ,  

- t222(K)b;]} + BLd[-(+ + A)(1 + Iuol2) 

- +o1211ro + 2boqo + 2ropol. (9a> 
Repeating the calculation for the action given in equations ( 2 4  (and (4e-4h), the action 
o6tained after one removes the double occupancy), we obtain instead equation (9b): 
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ro = -2 ln{cosh[/3E(K)/2]} + ln[ion - Q + ( K ) ]  
K K , m ,  

+ pLd[+(l/J)qi + 2rOp0 - (&F + A)(1 + l U d 2 )  - tlUO/2qrOl. (9b) 
E ( K )  is given by equation (sa) and Q + ( K )  by equation (8d).  

aid of formula (7f). Using the matrices VB and VF we find 
At the end of this section we give the expression for rl, which is obtained with the 

rl = E UKlO - cos[A,~(n ,  n + v) - x,(4 - x,(n + .)I> 

+ K2U - cos[x,(n> + x u @  + 
+ ~ ~ ( 1 -  cos[e(n, n + p) - e(n + p, n +  p + 
+ e(n + + v ,  + - e(n + v ,  n ) l } ~  (9c) 

n , p , v  
+ X-,@ + iu + v) + x - v ( n  + .>I) 

where A,B(n,  n + v) = O(n, n + v) - t9(n = p, n + p o  + v). The coefficients K1, K 2  
and K 3  are functions of the amplitude part Y ,  b. These coefficients are determined by 
perturbation expansion, see equation (7f). The phase fluctuations x,(n) are the neutral 
gauge field induced by the spinons 

n + w  n + v + u  
A(s)  ds. 

n 
x,(4 + x,(n + = 1 4 s )  d s  + 

The functional rl given in equation (9b) was written in a form used in lattice gauge theory 
~ 3 1 .  

5. Investigation of the free energy To 

At the mean-field level we now investigate To, as well as the behaviour of the order 
parameter X ~ f ~ ( n ) f - ~ ( n  + p)  (the variation in To with respect to bo and qo (see equation 
9a) and in To with respect to qo (see equation 9b)).  

We start with equation (9a) .  Performing the variation with respect to b = bo and q = 
40, we find 

1 8t2 -1 
z= 

For t /U e 1 we findJeff = 4t2/U, a similar result obtained from mapping of the Hubbard 
model to an antiferromagnet. The function Ngf ( K )  represents the boson hole occupation 
function, NP+ ( K )  = {exp[/3QZ+(K)] -l}-l; N p  ( K )  is the double occupation function. 

These functions give rise to a thermal normalisation of Jeff. The critical temperature 
is obtained from qo( T = T,) = bo(T = T,) = 0. This justifies the neglect of the term 
t 2 t 2 (  K)b i .  The neglect will not be correct if we want to find the gap at T = 0. Due to this 
additionaltermweobtainJeff(qO) 2: 4t2/U[1 + al ( t2 /U)qi  + . . . ] ( a 1  = l),  whichshows 
that there is no simple relation between the gap at T = 0 and T,. 

Repeating the calculation with respect to equation (9b) we find the same equation as 
that in (loa) with the difference that Jeff = J = 4t2/U. 

The variation in To with respect to A shows that the constraint condition (equation 
I C )  is satisfied. 
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where 

(when we use equation (9b), nd is absent in equation (lob)). The variation in To with 
respect to gives the number of particles Np = 1 - 6. 

Np = - ( a r o / d E F )  = 1 - ne + nd. (log) 
Since nd = 0 we find from equation (106) that nF = 1 - 6 (6 is the hole concentration). 
Using equation (1Oc) we obtain 

Equation (10h) shows that A = A(6) - 6. The solution of equation (loa), together with 
(10h), shows that the RVB critical temperature TFVB is (in the limit of small hole con- 
centration and rO/Jeff < 1): 

A common approximation used in the literature is to substitute ro = 6, but this relation 
is not legitimate in two dimensions because it requires hole condensation, which is absent 
in two dimensions. In order to test the dependence of T, on 6 we perform a variation in 
To with respect to r(, and po. The variation with respect to po gives the relation between 
r ,  and the condensate 

The variation in To with respect to ro (8ro /dro  = 0) gives 

(T,RVB/Jeff> = 1 - (ro/J,d2C1 c, = 3/4. (1 la)  

ro = t / u o / 2 q  = t n , ) ~ .  (lib) 

po  = r o  ( z * ( K ) / E ( K ) )  tanh[tBE(K)] = roJ,f i ' .  (Ilc) 

6 = n, = Tx { e x p [ ~ ~ + ( ~ > ]  -I>-'. 

K 

From equation (log) we have: 

( 1 1 4  
1 

L K  
Since there is no boson condensation in two dimensions [ Q + ( K )  = ( E ~  - E. - 

4tpo) + 2tpo(l - cos K,) + 2tp,(l - cos K ) ) ] ,  equation ( l ld )  diverges for - A - 
4tp0+ 0). In order to have condensation of hole bosons in the state K = 0 we 
assume the existence of a transfer hopping element in the z-direction. The critical 
temperature is obtained from equation ( 4 4  with the requirement that - A - 
4tp,-+ 0, and we find: 

The constant CO and a depend on the coupling in the third direction. For 3~ isotropic 
case a = 3 and for a two-dimensional system weakly coupled in the third direction, 
a=== 1. 

T:E = Cotpo6" = Cot(ro/Jeff)6". (12a) 
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From equation (12a) we see that TFE the condensation temperature depends on ro 
(for a given concentration 6) and from equation (l la) we have that TFVB also depends 
on yo. According to equation (5a) the critical superconducting temperature is given by 
the vanishing of the order parameter. 

(e)2(40) = no(Tc)~(T,)40(Tc) = 0. (12b) 
At the mean-field level we take q to be a constant. The function n o ( T )  represents the 
hole condensation which vanishes at To = T,. 

The critical superconducting temperature is determined after we find the value of ro 
from equations ( l l a )  and (12a). The critical superconducting temperature is given by: 

T, = T,B" = TRVB c .  (12c) 

T, = t(Co/.\/Cl)6@. ( 1 2 4  

Solving for T, we find 

This shows that T, depends on the coupling to the third dimension and increases with 6. 
We mention that in [25] the authors find also that T,  is proportional to the coupling in 
the third direction. 

6. Fluctuation effects 

In this final section we consider the effects of the phase fluctuations given by r,. The 
analysis relies on the existing results in the literature (see especially the paper by Peskin 
[ l l ] ) .  From this analysis we will see that for 6 < 6, there is no superconducting solution 
(6, is the critical hole concentration). 

For T < T, (T ,  is the mean-field value obtained from ro) we compute the parameters; 
K1 2: p 2 b i ( T ) r i ( T )  = /32Jefi(lT - Tcl/Tc); K 2  = P3r;(T) ;  K ,  = P3b;(T) .  For d = 3 we 
find that our results obtained from To are stable. The coherence length j, and the pen- 
etrationlengthc,aregivenby[ll,24] E;1 = . \/Kl(T), 66' = .\/K2(T). Fromtheresults 
of the 3~ x-y model coupled to a gauge field [11, 241 (the three-dimensional type I1 
superconductor) we find that in the parameter space (Kl, K2)  we have a type I1 super- 
conductor for K;' < Kl,; (K1,, = 0.33) and K;' s K;.; (K2,c  = 1/13). 

The fact that we have a critical value K 2  = K2,c implies the existence of a critical 
concentration 6 = 6, and we have T, = t(6 - a,), 6 > bc = 6,(K2,,). 

For 6 = 0, K2 = K ,  = 0 and rl reduces to a simple lattice gauge theory with the 
critical behaviour of an x-y model [23]: 

rl /a=o = K ,  E (1  - cos[e(n, n + p )  - e(n + p ,  II + p + V )  
n.p,v 

+ e(n + p + V ,  II + V) - e(n + V ,  n)]} .  
The analysis of the phase-dependent functional shows that we have three correlation 
lengths. In the insulating phase the RVB correlation length is determined by K ,  (6 = 0, 
K1 = K2 = 0, K3 # 0 ,  RVB = [K3(T)]-l12. 

In the superconducting phase we have 5, = [K1(T)]-1/2 and the spinon correlation 
length, which we identify with the Higgs correlation length EH = [K2(T>]-'/' (when 
EH-+ a the condensate order parameter (e) = 0 vanishes noq = 0, no # 0, q = 0). 

Finally we should like to mention that our results can be understood in terms of the 
lattice gauge theory. As we have explained, the operator C;(n)  is expressed after 
the elimination of the double occupancy by c,'(n) = f :  (n)e(n)  or, alternatively, 
c,'(n) = f+(n)e:  (n)  (a spinless fermion, f ,  f and a spin-l boson e,, e,'). 
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The superconducting order parameter is given by 
def 

A p ( 4  = c,t (n)C-tu(n + P )  = f,t (a) [e(n)e(n + P.>lf'u(n + PI 

= f' (n)  [eu(n>e-u(n + P)lf'(. + PI 
with the gauge field ~ , ( n )  given by e,(n)e-,(n + p)  = exp(iX,(n)). Using equation (9c) 
we find in the continuum limit 

l-1 z: Kl 2 cos[A,w4 - x,(n>l + Kz 2 cosCx,(n) + x,(n + P )  
n . ,  n,lr,v 

+ x-,(n + v + p)  + x _ v ( n  + v)]. (13) 
Assuming that we are in the quantum paramagnet phase (a confined phase) the 

fluctuations governed by K ,  are negligible. 
According to the Abelion-Higgs mechanism, equation 13 has a confining phase in 

which spontaneous breaking of U(1) symmetry occurs (exp(iO(n))) = 0 and as a result 
superconductivity appears. This is called the Higgs phase with massiveX,(n) fluctuations. 

To conclude, we show that the Hubbard model has a superconducting solution for 
the non-half-filled band case. This solution exists for 2~ system coupled weakly in the 
third dimension (the third dimension is required even at the mean-field level). Con- 
sidering phase fluctuations beyond the mean field we have constructed the gauge theory 
for the Hubbard model and have shown that superconductivity appears in the confining 
phase with a Higgs field. 
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